Quantitative chemical exchange sensitive MRI using irradiation with toggling inversion preparation.

نویسندگان

  • Tao Jin
  • Seong-Gi Kim
چکیده

Chemical exchange (CE) sensitive MRI contrast acquired with an off-resonance irradiation pulse is affected by other relaxation mechanisms, such as longitudinal and transverse relaxations. In particular, for intermediate CEs, the effect of transverse relaxation often dominates CE contrast. Since water relaxation rates can change significantly in many pathological conditions or during physiological challenge, it is crucial to separate these relaxation effects in order to obtain pure CE contrast. Here we proposed a novel acquisition scheme in which a toggling inversion pulse is applied prior to the off-resonance irradiation. By combined acquisition of irradiation images with and without an inversion pulse at both the labile proton frequency and the reference frequency, longitudinal and transverse relaxation contributions are cancelled, and the quantification of CE parameters, such as the exchange rate and the labile proton concentration, can be simplified. Furthermore, the CE-mediated relaxation rate can be readily determined with a relatively short irradiation pulse and without approaching the steady state, therefore, reducing the limitations on hardware and specific absorption rate requirements. The signal characteristics of the proposed method are evaluated by numerical simulations and phantom experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic resonance imaging of the Amine-Proton EXchange (APEX) dependent contrast

Chemical exchange between water and labile protons from amino-acids, proteins and other molecules can be exploited to provide tissue contrast with magnetic resonance imaging (MRI) techniques. Using an off-resonance Spin-Locking (SL) scheme for signal preparation is advantageous because the image contrast can be tuned to specific exchange rates by adjusting SL pulse parameters. While the amide-p...

متن کامل

A theoretical analysis of chemical exchange saturation transfer echo planar imaging (CEST-EPI) steady state solution and the CEST sensitivity efficiency-based optimization approach.

Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute labile protons and microenvironmental properties, augmenting routine relaxation-based MRI. Recent developments of quantitative CEST (qCEST) analysis such as omega plots and RF-power based ratiometric calculation have extended our ability to elucidate the underlying CEST system beyond the simplistic apparent CEST measurement...

متن کامل

Preparation and Characterization of Heterogeneous PVC-Silica Proton Exchange Membrane

Heterogeneous proton exchange membranes (PEM) are synthesized using the dry phase inversion technique. The casting solutions are prepared by dispersing a finely ground cation exchange resin particle in N,N-dimethylacetamide (DMAc) solution of polyvinyl-chloride (PVC). Results show that ion exchange capacity is increased with the addition of 1 %-wt nanosilica (from 0.14 to 0.27 meq/g) while it i...

متن کامل

Fast multislice pH-weighted chemical exchange saturation transfer (CEST) MRI with Unevenly segmented RF irradiation.

Chemical exchange saturation transfer (CEST) MRI is a versatile imaging technique for measuring microenvironment properties via dilute CEST labile groups. Conventionally, CEST MRI is implemented with a long radiofrequency irradiation module, followed by fast image acquisition to obtain the steady state CEST contrast. Nevertheless, the sensitivity, scan time, and spatial coverage of the conventi...

متن کامل

Study of chemical exchange in the intermediate exchange regime: a comparison of spin-locking and CEST techniques

Introduction: Recently, an indirect MRI detection of hydroxyl protons of small metabolites via the water signal was reported [1]. Selective off-resonance irradiation attenuates the water signal via chemical exchange saturation transfer (CEST) between hydroxyl and water protons. It was found that the magnetisation transfer (MT) asymmetry ratio (MTRasym) depends nonlinearly on hydroxyl-group conc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 68 4  شماره 

صفحات  -

تاریخ انتشار 2012